HERBICIDE EVALUATION IN ARKANSAS RICE, 1996

Eric Webster Extension Weed Scientist Southeast Research and Extension Center

Ron Talbert University Professor Department of Agronomy

Ford Baldwin Extension Weed Scientist Cooperative Extension Service

David Gealy USDA-ARS Plant Physiologist National Rice Germplasm Evaluation and Enhancement Center

Tomilea Dillon Assistant Specialist Cooperative Extension Service

Jason Norsworthy Graduate Assistant Department of Agronomy

Lance Schmidt Research Assistant Department of Agronomy

Dwayne Beaty Research Specialist Southeast Research and Extension Center

Arkansas Agricultural Experiment Station Fayetteville, Arkansas 72701
Introduction ... 1

Methods and Results .. 2

Abbreviations ... 3

Tables ... 3

Triclopyr (Grandstand) and propanil (Stam M-4)
weep control in rice, Rohwer ... 3
Post-flood application timing of triclopyr (Grandstand)
following fenoxaprop (Whip), Rohwer .. 5
Evaluation of lactofen (Cobra) applied delayed preemergence, Rohwer 8
Delayed preemergence and postemergence combinations
for rice weed control, Rohwer ... 10
Potential salvage treatments for rice, Rohwer .. 14
Thiobencarb (Bolero) timings and combinations
for broadleaf and grass control, Rohwer ... 16
Pendimethalin (Prowl) combinations for rice weed control, Rohwer 19
Quinclorac (Facet) formulations for grass control in rice, Rohwer 21
Early season grass control in rice, Rohwer .. 23
Postemergence grass control in rice, Rohwer ... 26
V10029 for weed control in rice, Rohwer ... 28
Preemergence weed control in rice, Rohwer ... 32
Propanil formulations with reduced rates
of quinclorac (Facet), Stuttgart ... 35
Delayed-preemergence mixtures
for resistant barnyardgrass, Stuttgart ... 39
Quinclorac (Facet) formulations for grass control
in rice, Stuttgart ... 41
F-8426 (carfentrazone) postemergence in rice, Stuttgart 43
Clomazone (Command) for resistant barnyardgrass
control in rice, Stuttgart .. 45
Molinate (Ordram) and propanil (Stam) mixtures
for barnyardgrass control, Stuttgart ... 48
Halosulfuron (Permit), bensulfuron (Londax), and triclopyr
(Grandstand) for nutsedge and aquatics in rice, Stuttgart 50
Control of weeds with triclopyr (Grandstand) - Test 1, Stuttgart 53
Control of weeds with triclopyr (Grandstand) - Test 2, Stuttgart 55
Herbicide antagonism with fipronil, Stuttgart ... 57
Control of propanil-resistant and -susceptible barnyardgrass, Stuttgart 59
Control of propanil-resistant and -susceptible barnyardgrass, Lonoke 62
Potential synergistic effects of herbicides and insecticides
with propanil (7 experiments), Fayetteville .. 65
Glufosinate (Liberty)-tolerant rice, Lonoke ... 77
Clomazone (Command) and quinclorac (Facet)
combinations in rice, Lonoke .. 80
Lactofen (Cobra) for weed control in rice, Lonoke ... 83
Propanil (Stam) combinations for grass control in rice, Lonoke 85
Postemergence grass control in rice, Lonoke ... 88
Herbicide combinations with V10029 in rice, Lonoke 90
Broadleaf and grass control in rice, Lonoke .. 94
Herbicide Evaluation in Arkansas Rice, 1996

Herbicide programs for rice, Lonoke .. 97
Preemergence weed control in rice, Lonoke 101
Early season grass control in rice, Lonoke 104
Quinclorac (Facet) formulations for grass control in rice, Lonoke 108
Pendimethalin (Prowl) combinations for weed control in rice, Lonoke .. 110
Strawhull red rice control in glufosinate (Liberty)-tolerant rice, Stuttgart . 112
Response of blackhull and strawhull red rice to soybean herbicide
 treatments, Stuttgart ... 114
Control of propanil-resistant barnyardgrass (Year 1), Stuttgart, (1995) .. 116
Control of propanil-resistant barnyardgrass (Year 2), Stuttgart 119
Appendix Tables ... 122
 (Plant names, herbicide names, and climatological data)

ACKNOWLEDGMENTS

The authors acknowledge the Arkansas Rice Research and Promotion Board for financial
support for some of these experiments. The following companies also provided financial support
and chemicals used in the studies: AgrEvo, BASF, Cedar, Cyanamid, DowElanco, DuPont,
FMC, Helena, Monsanto, Rhone-Poulenc, Rohm & Haas, Terra, UAP, Valent and Zeneca.

The assistance of the following individuals is gratefully acknowledged: Howard Black,
Biological Technician, National Rice Germplasm Evaluation and Enhancement Center; Mike
Dillon, Research Technician, Lonoke; Troy Dillon, Research Technician, Lonoke; Larry Earnest,
Superintendent, Southeast Branch Station, Rohwer; Bill Fox, Research Specialist, Rice Research
and Extension Center, Stuttgart; Toby Hedges, hourly assistant; Vann Langston, hourly assistant;
John Robinson, Director, Rice Research and Extension Center, Stuttgart; Vaughn Skinner, Farm
Manager, Main Experiment Station, Fayetteville; Randy Spurlock, Research Technician, Rohwer;
Celeste Wheeler, Research Technician, Lonoke; Sunny Wilkerson, hourly assistant, Lonoke;
Marilyn McClelland, Research Associate, Main Experiment Station, Fayetteville (editing and
compilation); and Marci Milus and Jody Edwards, secretarial staff.
INTRODUCTION

Herbicidal weed control is economically important for production of rice. Field experiments are conducted annually in Arkansas to evaluate the activity of developmental and commercial herbicides for selective control of weeds in rice. These experiments serve both industry and Arkansas agriculture by providing information on the selectivity of herbicides still in the developmental stage and by comparing the activity of these new herbicides with that of recommended herbicides.

The research reported herein is a compilation of data from experiments conducted by four of the state's agronomic researchers responsible for weed control in rice. Eric Webster is located at the Southeast Research and Extension Center at Monticello and conducts rice research at the Southeast Branch Experiment Station at Rohwer. Ron Talbert, located at the Main Experiment Station, Fayetteville, conducts research at Fayetteville, at the Rice Research and Extension Center, Stuttgart, and at the Lonoke location of the University of Arkansas at Pine Bluff. Ford Baldwin's rice research is located primarily at the Lonoke location of the University of Arkansas at Pine Bluff, and David Gealy is located at the National Rice Germplasm Evaluation and Enhancement Center at Stuttgart.

Common names of herbicides presented in data tables are referenced to trade names and sponsoring companies in Appendix Table 1. The scientific names of the plants evaluated and their associated Bayer codes are listed in Appendix Table 2. Climatological data for 1996 are presented in Appendix Table 3.

METHODS

Pertinent information specific to each field test precedes each data table. Included is information on general field conditions, field maintenance, and herbicide application and general conclusions from the data. All test areas were fertilized as recommended from soil tests. Experiments at Lonoke were fertilized before planting with chicken litter at 200 pounds/acre (lb/A), which was incorporated lightly into the soil with a field cultivator.

The herbicides used in these studies are designated in the tables by the common name proposed to or accepted by the Weed Science Society of America or, when common names are unavailable, by code number designation. A trade name is specified for compounds having more than one trade name or manufacturer. The Stam® formulation was used where propanil formulation is not designated. Herbicides formulated as pre-packaged mixtures are listed in tables by their component herbicides in parentheses. All herbicide rates are expressed in pounds of active ingredient or the acid equivalent per acre (lb/A) on a broadcast basis. Adjuvant rates are expressed as percent volume/volume.

Effects of the herbicide treatments were evaluated by weed control ratings, crop injury ratings, crop yields, and crop stand counts. Percentages of weed control and crop injury were visually estimated: 0% represents no effect, and 100% represents complete kill. Rice yield is reported as lb/A; 1 bushel = 45 pounds. Data were subjected to analysis of variance, and the LSD
Herbicide Evaluation in Arkansas Rice, 1996

(Least Significant Difference) test at the 5% level of significance was used for separation of means.

ABBREVIATION OF TERMS

The following abbreviations are used in tables:

BkPkCO2, CO2 backpack sprayer
CEC, cation exchange capacity of soil
Cot., cotyledon
DAT, days after treatment
DF, dry flowable
DPF, days prior to flood
DPRE, delayed preemergence
EC, emulsifiable concentrate
EPOST, early postemergence
fb, followed by
FF, flat fan nozzle
G, granular formulation
Gpa, gallons per acre
LF, leaf
LPOST, late postemergence
LSD, least significant difference
ME, microencapsulated
MP-44, annual weed control recommendations for Arkansas
MPOST, mid-postemergence timing
N/A, not applicable
PI, panicle initiation
POST, postemergence
POSTFLD, after flood
PRI, preplant incorporated
PRE, preemergence
PREFLD, before flood
RCB, randomized complete block (experimental design)
UAPB, University of Arkansas at Pine Bluff
WAF, weeks after flood
XR, extended range nozzle